skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wangnai, Chinnapong"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. AbstractRecently, we reported the discovery of a novel endoglucanase of the glycoside hydrolase family 12 (GH12), designated IfCelS12A, from the haloalkaliphilic anaerobic bacteriumIocasia fonsfrigidaestrain SP3-1, which was isolated from a hypersaline pond in the Samut Sakhon province of Thailand (ca. 2017). IfCelS12A exhibits high substrate specificity on carboxymethyl cellulose and amorphous cellulose but low substrate specificity on b-1,3;1,4-glucan. Unlike some endoglucanases of the GH12 family, IfCelS12A does not exhibit hydrolytic activity on crystalline cellulose (i.e., Avicel™). High-Pressure Liquid Chromatography (HPLC) and Thin Layer Chromatography (TLC) analyses of products resulting from IfCelS12-mediated hydrolysis indicate mode of action for this enzyme. Notably, IfCelS12A preferentially hydrolyzes cellotetraoses, cellopentaoses, and cellohexaoses with negligible activity on cellobiose or cellotriose. Kinetic analysis with cellopentaose and barely b-d-glucan as cellulosic substrates were conducted. On cellopentaose, IfCelS12A demonstrates a 16-fold increase in activity (KM = 0.27 mM;kcat = 0.36 s−1;kcat/KM = 1.34 mM−1s−1) compared to the enzymatic hydrolysis of barley b-d-glucan (KM: 0.04 mM,kcat: 0.51 s−1,kcat/KM = 0.08 mM−1s−1). Moreover, IfCelS12A enzymatic efficacy is stable in hypersaline sodium chlorids (NaCl) solutions (up to 10% NaCl). Specifically, IfCel12A retains notable activity after 24 h at 2M NaCl (10% saline solution). IfCelS12A used as a cocktail component with other cellulolytic enzymes and in conjunction with mobile sequestration platform technology offers additional options for deconstruction of ionic liquid–pretreated cellulosic feedstock. Key points•IfCelS12A from an anaerobic alkaliphile Iocasia fronsfrigidae shows salt tolerance•IfCelS12A in cocktails with other enzymes efficiently degrades cellulosic biomass•IfCelS12A used with mobile enzyme sequestration platforms enhances hydrolysis 
    more » « less